Poisson reduction and the Hamiltonian structure of the Euler-Yang-Mills equations

نویسندگان

  • François Gay-Balmaz
  • Tudor S. Ratiu
  • TUDOR S. RATIU
چکیده

The problem treated here is to find the Hamiltonian structure for an ideal gauge-charged fluid. Using a Kaluza-Klein point of view, we obtain the non-canonical Poisson bracket and the motion equations by a Poisson reduction involving the automorphism group of a principal bundle.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Geometric Structure of Complex Fluids

This paper develops the theory of affine Euler-Poincaré and affine Lie-Poisson reductions and applies these processes to various examples of complex fluids, including Yang-Mills and Hall magnetohydrodynamics for fluids and superfluids, spin glasses, microfluids, and liquid crystals. As a consequence of the Lagrangian approach, the variational formulation of the equations is determined. On the H...

متن کامل

Reduced Lagrangian and Hamiltonian Formulations of Euler–yang–mills Fluids

The Lagrangian and Hamiltonian structures for an ideal gaugecharged fluid are determined. Using a Kaluza–Klein point of view, the equations of motion are obtained by Lagrangian and Poisson reductions associated to the automorphism group of a principal bundle. As a consequence of the Lagrangian approach, a Kelvin–Noether theorem is obtained. The Hamiltonian formulation determines a non-canonical...

متن کامل

Euler-Poincaré Dynamics of Perfect Complex Fluids

Lagrangian reduction by stages is used to derive the Euler-Poincaré equations for the nondissipative coupled motion and micromotion of complex fluids. We mainly treat perfect complex fluids (PCFs) whose order parameters are continuous material variables. These order parameters may be regarded geometrically either as objects in a vector space, or as coset spaces of Lie symmetry groups with respe...

متن کامل

Poisson Structure Induced (Topological) Field Theories

A class of two dimensional field theories, based on (generically degenerate) Poisson structures and generalizing gravity-Yang-Mills systems, is presented. Locally, the solutions of the classical equations of motion are given. A general scheme for the quantization of the models in a Hamiltonian formulation is found.

متن کامل

Poisson geometry and first integrals of geostrophic equations

We describe first integrals of geostrophic equations, which are similar to the enstrophy invariants of the Euler equation for an ideal incompressible fluid. We explain the geometry behind this similarity, give several equivalent definitions of the Poisson structure on the space of smooth densities on a symplectic manifold, and show how it can be obtained via the Hamiltonian reduction from a sym...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008